Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

نویسندگان

  • Monika Nendza
  • Martin Müller
  • Andrea Wenzel
چکیده

Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log Kow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR models for reproductive toxicity and endocrine disruption in regulatory use – a preliminary investigation†

A special challenge in the new European Union chemicals legislation, Registration, Evaluation and Authorisation of Chemicals, will be the toxicological evaluation of chemicals for reproductive toxicity. Use of valid quantitative structure-activity relationships (QSARs) is a possibility under the new legislation. This article focuses on a screening exercise by use of our own and commercial QSAR ...

متن کامل

A novel approach to generate robust classification models to predict developmental toxicity from imbalanced datasets.

Computational models to predict the developmental toxicity of compounds are built on imbalanced datasets wherein the toxicants outnumber the non-toxicants. Consequently, the results are biased towards the majority class (toxicants). To overcome this problem and to obtain sensitive but also accurate classifiers, we followed an integrated approach wherein (i) Synthetic Minority Over Sampling (SMO...

متن کامل

Neural network based classification of acute toxicity of phthalate esters to fathead minnow

Chemoinformatics, the brain child of Frank Brown [1], has emerged as new branch of science by the technological marriage of information technology and chemistry [2,3]. Quantitative Structure-Activity Relationships (QSARs), needed for the analysis/drug-design, are in the form of structural alerts that incorporate molecular substructures, presence/absence of activity, structural relationships, et...

متن کامل

Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™.

This study concentrates on the external validation of an existing Quantitative Structure-Activity Relationship (QSAR) model widely used for long-term aquatic toxicity to fish. In the context of the REACH legislation, QSARs are used as an alternative for experimental data to achieve a complete environmental assessment without the need for animal testing. The predictivity of the model was evaluat...

متن کامل

QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction.

The method for QSAR modelling of rat acute toxicity based on the combination of QNA (Quantitative Neighbourhoods of Atoms) descriptors, PASS (Prediction of Activity Spectra for Substances) predictions and self-consistent regression (SCR) is presented. PASS predicted biological activity profiles are used as independent input variables for QSAR modelling with SCR. QSAR models were developed using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science. Processes & impacts

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2017